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Measurement problem

e A health state
— recognizable

— conceptually well defined
— has known consequences

e No gold standard

— more than diagnostic error
— no single consensus measurement
— multifaceted consequences




Measurement Problem
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Measurement Problem
Aging

e Recognition
— Chronic disease, disability, events
—Variability among individuals

e Theory: a biological process
— More than consequence accumulation
— Multisystem dysregulation

e No gold standard
— Even to the point of “surrogates”




Successful measures
Classical Approach: Validity

e Face: recognition
e Content: facets covered
e Criterion: utility

e Construct: theory
- internal; external
DeVellis, 1991, Bartholomew, 1996




Points of the Introduction

e A well defined target; a less-well-
defined operationalization

e Will retain validation for measure
definition; performance evaluation

e Objective: Method to unify multiple
validation aspects in 1 analysis




Outline

e Latent variable paradigm for
measurement

e A new idea

— Aims to balancing potentially
conflicting validation premises

— Application

e Discussion




Measurement
Latent Variable Paradigm

@ theory

W

Pro-

.. 2 Adverse outcomes
inflammation
v /
A/ A

Determinants

D




| Generic

Specific (Latent Class Reg.; Categorical U=j, {1,...,J})

| Measurement assumptions : [Y;|U;,xi]
— conditional independence, nondifferential measurement

> heterogeneity in criterion presentation unrelated t¢
measured or unmeasured characteristics

> fundamentally identifying




Latent Class Measurement
How to obtain “indices”?

e VVia posterior probabilities of class
membership =

Foy (u]y,x)

e Then: exactly how?
- “Modal”: by highest probability

— "Pseudo-classes”: Randomize (Bandeen-
Roche et al., 1997, Wang et al., 2005)




In what sense is LCA a
“measurement” model?

e [t operationalizes theory
- Science: Test if predictions borne out
— Most frequent theory: Homogeneity




Latent Class Measurement
Syndrome Validation Application

e Criteria

“a group of signs and symptoms that
occur together and characterize a particular

abnormality” (Webster Medical Dictionary 2003)

o If criteria characterize syndrome:

(if <2, no co-occurrence)

(otherwise,
more than one abnormality characterized)
Bandeen-Roche et al., J. Gerontol Med Sci, 2006




Measurement Application:
Pro-Inflammation

e Central role: cellular repair

e A hypothesis: dysregulation key in adverse aging
— Muscle wasting (Ferrucci et al., JAGS 50:1947-54,;
Cappola et al, J Clin Endocrinol Metab 88:2019-25)

— Receptor inhibition: erythropoetin production / anemia
(Ershler, JAGS 51:518-21)
up-regulation

Stimulus f IL-1#— TNF { IL-6
(e.g. W
muscle

damage)

# Difficult to measure. IL-1RA = proxy




Rationale of the New Work

e Which deserves pre-eminence?
— Internally validating assumptions?

— Externally validating assumptions?
e Frailty: close tie to systemic dysregulation
e Depression: genetic “subtypes”
e Aging: tie to chronological age

- Some compromise?




Rationale of the New Work

e A model (LCR) including externally
validating variables and fitting by

\\: 7/

ML already “is” a compromise




A representation theorem

e Consider "mixing” & “kernel” distributions:

posterior, —
model




A representation theorem

e Y. is equivalent in distribution to Y*
constructed as

1) Generate V;* from F;|x(V\X,-)

2) Given V.*, generate Y* from FY\V,x(y V., x,)

e Relevance:
- True for [} = Huber (1967) limit of MLE (e.qg.)




True vs. realized mixing models

Class 1 vs class 3




Rationale of the New Work

e Proposal: Allow stronger (or
weaker) compromise than ML via
“penalized” fitting




Implementing penalization

e On LCR kernel: Houseman, Coull &
Betensky, BMCS online early

e On LCR mixing distribution: Sheppard

Ph.D. thesis

e Key questions

— Different purpose than usual?
— What is the objective function?




Penalization
Very brief background

e Fitting: minimize

-2 In L(6;Y,x) + Ag(0)

e Examples
-"Ridge”: g(B8) = Z; 6;°
-"Lasso™: g(B) = 2, [6;]

Green, Int Stat Rev, 1987; Tibshirani, JRSS-B, 1996




Penalization
Very brief background

e A useful equivalence: penalized fit
obtains via formulating parameters
as crossed random effects
- “Ridge”: 8; ~ N(0,0{A}2)

—"Lasso”: 6; ~ double exp(0,h{A})

Wahba, JRSS-B, 1978; Ngo & Wand, J Stat Software, 2004




Form of the penalty
Current case

e Usual purpose: regularization

e Here: secondary validation

e Discriminant hypothesis:
Genotypes predispose individuals
to only one “subtype” of
depression




Form of the penalty
Genetic subtypes example

Say, LCR with one normal class (1) and two
disordered classes (2, 3):

Hypothesis: [,; negligible, and [3,;, appreciable,
N

log( ) Por + PiiX
P1

with p, = pr(class k); x=genotype indicator;
k=2,3;3,)" €12,3};1# 7]




Form of the penalty
Genetic subtypes example

e Ridge, lasso not quite right

) — Bi.e:1+ By3€, here
[313/ contradicts
hypothesis

Bioe:1+ Bises /\
here meets /

hypothesiS/

What matters: P12

angle a




Form of the penalty
Genetic subtypes example

e Approach 1
— Consider a € [0,90] degrees
— Desired orientations are cos(a)=1, sin(a)=1
- i.e., goal: minimize cos(a)+sin(a)

— i.e. minimize |/512|+|/3)13|

JBE + B2




Form of the penalty
Genetic subtypes example

e Approach 2

— Write BlZ — pB/ Bl3 — (1_p)B
— Fit with beta random effect on p

ORVAY

A

1
— Generalization: B = pB, p ~ Dirichlet




Fitting
Approach 2

e E-M algorithm: quite straightforward

o E-step: Computes posterior class
membership probabilities given current
parameter iterates

e M-step: minimize (e.g. Nelder-Mead)

n

— E E h(jldata)In] f,, (ux, p, f)]+ (1 - %)IH[P(I - D)]

i=1 j=I




Simulation study
Three-class model

e 100 reps; single x~Unif(-.5,.5); n=1000

e Poly Log Reg: By =By,=0; B13=-1.4;
B,,€{0,-0.5,-1.4}

e Measurement:

Class 1 Class 2

.15 .85
.15 .85
.15 .85
.15 .13
.15 .13




Simulation study
Three-class model

e TWO assumption scenarios
-Frank LCR

—Differential measurement: First
three items have increased
log(odds =1) per unit x of 1.4
within each class




Simulation study
Beta model: A =1.5,.5

Effectively a
0/1 penalty




Simulation Study
Diff. Meas.;

B:,=0; Bi3=-1.4

Param.

Penalized

LCR

Estimate | SE

Estimate

-0.04

-0.54

-0.79

-1.01




Simulation Study
Non-diff meas; B,,=0; B;5=-1.4

Param. |Penalized LCR

Estimate | SE Estimate

0.04

-1.41




Simulation Study
Diff. Meas.; B,=Bs=-1.4

Param. |Penalized LCR

Estimate | SE Estimate

-1.61 : -2.00

-0.08 : -1.02




Simulation Study
Non-diff meas; B,,=B3=-1.4

Param. |Penalized LCR

Estimate | SE Estimate

-1.45 : -1.45

-1.38 : -1.38




Simulation Study
Non-diff meas; B,,=B5=-1.4
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One empirical lead
___Deciding the extent of penalization

e Notice the form of |#E(ES] :

o Taearlby Rightrpenaltyiyields & = f




Simulation study
Three-class model

Small: 100 reps; single x~Unif(-.5,.5)
Multiple n: Here, =2000

Poly Log Reg: By;=Bp,=0; B;,=-1.4; B;,=-2.8
Measurement:

Class 1 Class 2

.15 .85
.15 .85
.15 .85
.15 .13
.15 .13




Simulation study
Three-class model

e TWO scenarios (among more)

- Frank LCR

— Differential measurement: last two items
have increased log(odds =1) per unit x of
1.4 within each class

e Premise: PRGEND  FRUEND] quite different

e Measure: Kullback-Leibler distance




KL Distance: f*, f

Scenario 1, n=2000

-34 -33 -32 -3.1 -3.0 -29 -28 -27 -2.6 -25 -24 -23 -22

True

4.99 476 4.76 4.86 4.89 5.15 5.26 5.42 ¢.23 6.34 6.93 7.59 7.99
4.58 4.28 4.40 4.57 4.19 4.42 4.62 5.09/5.15 5.62 6.03 691 7.31
4.52 436 4.18 4.07 3.88 3.96 4.22 4.26 4.55 5.09 5.52 5.96 6.58

4.30 4.05 3.90 3.64 3.85 3.71 3.73 405 4.35 4.46 4.92 533 5.77
4.56 4.21 3.80 3.62 3.52 3.54 3.67/3.69 3.88 4.07 4.36 4.88 5.46
4.67 4.11 3.88 3.70 3.56 3.41 3.46 3.42 3.75 3.74 4.28 4.52 4.85
4.87 439 391 3.84 3.62 3.27[3.6213.40 3.69 3.68 3.70 4.03 4.52
5.25 4.73 4.50 4.16 3.86 3.54,|3.45(3.46 3.39 3.52 3.78 4.12 4.43
5.58 4.99 476 4.47 4.16 3,81 3.70 3.60 3.75 3.74 3.85 4.25 4.30
6.25 6.05 5.26 4.90 4|\;|5L 14 420 4.03 4.01 3.94 391 4.45 4.28




KL Distance: f*, f
Scenario 2, n=2000

-3.8 -3.7 -3.6 -35 -34 -33 -32 -3.1 -3.0 -29 -28

ML

593 6.35 7.17 8.00 8.76 9.36
5.14 5.84 638 6.76 7.79 8.55
4.60 5.20 5.76 6.17 7.01 7.78
4.25 4.69 5.04 5.64 6.34 7.01
3.94 434 4.60 5.10 5.62 6.70
3.64 3.99 4.25 493 540 6.17
3.63 3.98 4.35 4.75 5.12 5.34
3.57 3.85 4.17 4.40 4.79 5.43
3.62 3.80 4.19 4.65 4.87 5.38
3.82 4.05 4.24 4.56 5.05 334
4.46 4.35 4.65 4.88 5.11|5.41
4.84 4.72 474 5.01 5.49 5.85
5.17 5.33 5.18 5.52 5.96 6.08

True




Simulation Study
Empirical support for “penalty”?

e Average
conditional
probability
estimates
amazingly
stable

e Distinction:
Y|V*,x




Frailty analysis: Data
INCHIANTI (Ferrucci et al., JAGS, 48:1618-25)

e Aim : Causes of walking decline

Brief design

— Random sample > 65 years (n=1270)

- Enrichment for oldest-old, younger ages

— Participation: > 90% in the primary sample
- Home interview, blood draw, physical exam

Dysregulation: inflammation - 7 cytokines
- IL-6, CRP, TNF-a, IL-1RA, IL-18, IL-1B, TGF-B
— Here: concern = poorer inhibition

Frailty: Fried criteria (as before)




Frailty analysis: Results

e Measurement model: 2 classes
— Conditional probabilities similar to WHAS
- Lower “frail” prevalence (15% vs. 27%)

e Regression model

— 1 SD worse inhibition index associated with 35%
reduction in non-frail odds (z ~ 3)

— Regression coefficient on original index scale: 3.00

e Next: Vary regression coefficients in
increments of +/- 0.5, up to +/- 2.0




Frailty analysis: Results
Posterior probs. from different fits




Frailty analysis: Results
Posterior probs. non-frail, different fits




Frailty analysis: Results
Age-adjusted relation to mobility

Frailty fit: Mobility slope |SE
inflam. slope |(frail vs non)

ML - 2.0 -1.1
_-1.0 -1.0
_ - 0.5 -1.0
L -0.99
_+ 0.5 -0.93
_+ 1.0 -0.92
-+ 2.0 -0.82




Recap

e Presented: Frameworks for
measurement

— of complex geriatric health states
—incorporating biological knowledge

e Demonstrations
~ Frailty in WHAS

- Frailty and inflammatory dysregulation
in In CHIANTI




Rationale for the proposal

e VS |looser internal validation criteria?
— estimability

e vS Bayesian approach
— depends on degree of empiricism
— if balance by “consensus”—Bayesian

e Allows some distrust of the data




Research needed

Theory elicitation, incorporation

Methodology freeing measurement model
estimation to "move” with “penalty”

— Rotation?
— Penalty on conditional probabilities

Compromise of latent variable, predictive
approaches

Best index derivation




Implications

e Refined understanding of aging
states and their measurement

— Integrating biology
— Increasing sensitivity, specificity

e Heightened accuracy, precision for
— Delineating etiology
— Developing and targeting interventions
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